044-246-0910
平林良人「ISO 9001 有効活用のためのビジネス改善ツール」(2005年)アーカイブ 第39回
2.3.5 統計的方法の活用
統計的方法の活用は、歴史的には前述のように第二次世界大戦前後アメリカで発達し戦後日本に紹介されたものである。したがって、日本が独自に工夫したものは少ないが、幾つかの特徴を以下に説明する。
(1)事実に基づく管理
統計的方法で重要なことは、データの質である。事実がはっきりと認識されなければ、その後多大な努力をしても水の泡と帰してしまう。データには間違ったもの、意図的に隠しているもの、技術的に取れないもの等いろいろな誤謬が入っている。
このことを強く主張したのが石川馨である。
- 「データを見たら危ないと思え、計測器を見たら危ないと思え、化学分析を見たら危ないと思え。QCはよく事実による管理(fact control)といっているが、実際にはこれがなかなかうまくいかない。まず事実をよくみていない。データが信用できない。否、むしろデータを見ないで経験と勘と度胸(KKD)でやっている。まず事実をよく調べることである。技術者はよく事実を見ないで、頭の中だけで考えたり、あるいはデータをもてあそんだりしている。
- 残念ながら、企業あるいは社会にはウソのデータが多い。ある会社での話。“ウチのおえら方は本当のことをいうと怒るから困るのです”と工場長。ところがそのうちに、その工場の若い技術者が本当の話をしたら、工場長が怒り出してしまったのである。このようにして、ウソのデータがつくられるのである。」
(2)統計的品質
大量生産の製品品質は統計的に考えられなければならない。大量生産の世界においては、個々の製品品質を保証するためには、まず大量に作られた製品の集まり(これをロットという)について、品質特性の分布全体が基準をどの程度満足しているかを把握する必要がある。統計的品質は、大量生産した品質特性の分布、すなわち製品の集団全体の品質の傾向によって把握できる。品質の傾向を示すものとは、良品率あるいは不良率等の集団の品質特性の分布をいう。
このように、製品の集団の品質を捉え、その品質の管理をしようとすると、どのような材料が用いられたか、どのような設備が用いられたか、どのような能力をもった作業者が行ったか、どのような条件で製造工程が処理されたか等が管理のポイントになる。統計的品質はこれらの条件によって支配され、好ましい統計的品質を得るにはこれらの条件を適正に管理することが必要になる。
個々の製品の品質の確保が検査によるのに対し、統計的品質の確保は製造工程が適切に設定され、管理されたかによる。製造工程の設定、管理によって、個々の製品がすべて規格を満足するとき、「品質は工程で作り込まれている」という。
(3)QC7つ道具
QC7つ道具は、日本式品質管理を実践する道具として広く日本の産業界に広まった手法である。デミングが統計的品質管理を日本に紹介してから、多くの会社でその手法を応用しようとしたが、数値データを扱うことで困難に直面した組織が多かった。QC7つ道具は、数値データを図表等に表すことによって、簡易的に統計的品質管理への理解を深める優れた手法である。
QC7つ道具は、QCサークル活動のひろがりと共に発展していったが、その特徴は、次の通りである。
- ① QC7つ道具は、簡易的ではあっても統計的手法に変わりはない。
- ② 現場で現物を現実的に見て、データを収集して、事実を解析する。
- ③ 個々のデータは、母集団からの情報であることを認識して活動を行う。
- ④ QC7つ道具は、固有技術を補完するものである。
- ⑤ QC7つ道具の2つ以上を組み合わせて活用すると効果が上がる。
QC7つ道具とは、次の7つの手法をいう。
- ① 特性要因図
- 発案した石川馨博士の名前をとり別名、「石川ダイヤグラム」とも称される。あるいは「魚の骨」とも呼ばれ、問題の結果と原因の関係を図に表し、原因の数値データを解析しようとする手法である。図で一番右に位置する「特性」は結果を表しているが、それに関係している「要因」とは原因を意味している。
- ② チェックシート
- データを取るときにデータを取り忘れないように、何かを検査、また点検する時に検査や点検のし忘れを防ぐために、項目を一覧表にしておくと便利であり解析もし易くなる。製品の検査や設備の点検、5Sや安全などの活動状況を点検するときにも用いるとよい。
- ③ パレート図
- イタリアの経済学者パレートが発案したことからこの名前がついている。問題とする事象(例えば、不良品数、クレーム数、損失金額等)の数を縦軸にとり、これを原因別、工程別、製品別、顧客別等に分類して、その数の大きさの順に並べた図(棒グラフ)である。パレート図からは、問題とする事象の重点項目とその全体に占める割合等が分かる。
- ④ ヒストグラム
- 多くのテータを纏めて、その分布状況を見やすくしたものがヒストグラムである。ヒストグラムからは、分布の状態が分かる(分布の型、ゆがみ、モード、離れ島)、工程能力の調査ができる、平均値・標準偏差の計算に便利である
- ⑤ 散布図
- 相関分析ともいわれる、要因と特性、特性と特性、要因と要因といった二つの変数間の関係を表した点グラフである。取り上げた2つの変数間の相関関係は、直線的な傾向か、要因の寄与率はどのくらいか等を調べることができる。
- ⑥ 管理図
- シューハートの発案した管理図は、工程の管理状態を調べることができる便利な手法である。管理図を使用すると次のことが分かる。
- 工程が管理されているか。
- 工程に時系列的な変化があるか。
- 層別の仕方が適切か。
- ⑦ グラフ
- 折れ線グラフ、棒グラフ、円グラフ、レーダーチャート、上記のパレート図、ヒストグラム、管理図、散布図等の数値データを分かり易く表現したもので、QC活動でよく用いられてきた。
なお、「管理図」と「グラフ」を一つにして、代わりに「層別」を入れてQC7つ道具とする場合もある(QCサークル活動運営の基本、QCサークル本部、(財)日科技連発行;しかし、層別は手法というより考え方とみたほうがよいのでここでは上記7つにした)。層別とは、数値データを事象ごとによって分けることをいう。事象(例えば、不良品数、クレーム数、損失金額等)を、原因別、工程別、製品別、顧客別等に分類することで、重点的に問題を取り扱うことができる。